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We present the thermodynamics of two variations of the interacting partially 
directed self-avoiding walk problem by discussing versions where the length of 
the walks assume real as well as a integral values. While the discrete model has 
been considered previously to varying degrees of success, the continuous model 
we now define has not. The examination of the continuous model leads to the 
exact derivation of several exponents. For the discrete model some of these 
exponents can be calculated using a continued-fraction representation. For both 
models the crossover exponent ~b is found to be 2/3. Moreover, we confirm the 
tricritical nature of the collapse transition in the generalized ensemble and 
calculate the full scaling form of the generating function. Additionally, the 
similarities noticed previously to other models, but left unexplored, are 
explained with the aid of necklacing arguments. 
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1. I N T R O D U C T I O N  

There has been much interest in partially directed self-avoiding walks 
(PDSAW) as free walks, (1) with self-interactions, (2~) as interacting with a 
surface ,  (5'6) and combining both self- and surface potentials/7-9) The great 
virtue of these models, as a simplification of the isotropie self-avoiding 
walk family of models, is that many analytic techniques can be applied. The 
behavior of free or noninteracting PDSAW has been understood (u in great 
details and the relevant "critical" exponents and scaling functions have 
been calculated. Critical indices for the model with only surface interactions 
have also been calculated. However, for the model with only self-inter- 
actions, the IPDSAW model, critical exponents have been absent from the 

1 Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia. 

737 

0022-4715/93/0800-0737507.00/0 �9 1993 Plenum Publishing Corporation 



738 Owczarek et  al. 

discussions. This addition of nearest-neighbor monomer-monomer inter- 
action has allowed the study of a model displaying a collapse transition, as 
occurs in the interacting case of the (undirected) self-avoioding walk 
(SAW) model. This transition is believed to be a tricritical point in the 
interacting SAW model and is seen as describing the 0-point of a dilute 
solution of polymers. The partially directed model has also been seen to 
possess such a collapse transition. (v) Previous work on the IPDSAW model 
has located the collapse transition, (2) while other work (3) has calculated the 
exact generating function of the model and proved the existence of the free 
energy and the collapse transition. The functions involved in this solution 
are q-hypergeometric functions for which far less is known about their 
behavior than standard special functions. As a consequence the calculation 
of exponents has not yet occurred. In this paper we consider two models, 
a "discrete" and a "continuous" IPDSAW as illustrated in Fig. 1. Our 
major results include the values for the common exponents at the collapse 
transition given in Table II. In Section 2 we provide a broad sketch of 
the behavior of the models, define these relevant exponents, and present the 
consequences of the tricritical scaling expected. By solving exactly the 
continuous IPDSAW model, whose generating function can be written in 
terms of Bessel functions, we are able to study their asymptotics and hence 
extract the critical exponents (Section 3). As a bonus we calculate the 
scaling form of the generating function. A new continued-fraction represen- 
tation of the solution to the discrete models is obtained (Section 4) and we 
generalize the solution (Appendix A) to include variables needed for a finer 
study of the problem. Assuming that certain exponents exist enables us to 
use the continued-fraction representation to calculate several of these 
exponents. The values obtained are the same as those found more 
rigorously in the continuous model. We show that the continuous model is 
the continuum limit (Section 5) of the discrete model and are therefore able 
to understand the equality of the exponents in some detail. Lastly 
(Section 6) we explain how both the discrete and our new continuous 
version of the IPDSAW model are related to other models in the literature. 
In particular, the models of polymer crystallization of Zwanzig and 
Lauritzen (ZL) and the two-dimensional linear solid-on-solid (SOS) in a 
magnetic field are shown by using necklacing arguments to be directly 
related to our models. 

2. S C A L I N G  

In this paper we examine two very similar models. The first is defined 
by considering a two-dimensional square lattice and choosing one vertex 
of that lattice from which to begin. From that vertex one builds partially 
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directed self-avoiding walks of varying lengths, as in Fig. 1. Our problem in 
statistical mechanics is the construction of the partition function QL(T) in 
the canonical ensemble of fixed length L walks where we have nearest- 
neighbor (attractive) monomer monomer interactions. The canonical 
partition function for the model is given by 

QL(T ) = ~ L m-~L) exp(mJ/kB T) (2.1) 
m 

where - J  is the energy associated with each nearest-neighbor contact, c~ L) 
is the number of configurations with L steps and m nearest-neighbor 
contacts, and kB is Boltzmann's constant. The interactions introduce the 
temperature and despite later generalizations the partition function is 
essentially a function of this one variable. A variation on this model is 
obtained if we consider a slightly different set of configurations and this 
gives us our second model. Here we allow the vertical segment length to 
assume real values and the interaction strength between successive vertical 
"folds" to depend solely on the overlap of the two (in analogy with the 
discrete model). This model can be conceived as the short-step limit of the 
discrete one. The two models behave in a similar fashion, as one might 
expect. The thermodynamic limit in these problems is the limit L ~ ~ .  
We now discuss the critical exponents with which we are concerned, 
For convenience they are summarized in Fig, 2. In the case of infinite 
temperature or no interactions (free walks) the thermodynamic limit is 
often referred to as a critical point. The terminology and the subsequent 
definition of the free walk exponents have been influenced by the formal 
equivalence of free isotropic SAW and the n ~ 0 limit of the O(n) model. 
The most common exponents are the partition function exponent 7 and the 

Fig. 1. (a) A typical configuration of a discrete IPDSAW with interaction bonds shaded 
gray. (b) A typical configuration of a continuous IPDSAW with interaction overlap shown 
dark gray. 
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Fig. 2. Diagrams illustrating the critical exponents and the associated limit directions (a) in 
the singularity diagram or generalized ensemble and (b) in the canonical ensemble. 

length scale exponent v. The exponent 7 is defined through the expected 
scaling form of the partition function as 

Qc ~ # LL~- 1, T = c~ (2.2) 

and has the value 7 = 1 in PDSAW. Because this is a directed problem, 
there are two length scale exponents that can be defined, each measuring 
essentially the average size of walks in the horizontal, vx= 1, and vertical 
directions, v y = 1/2. These exponents are defined via the radius of gyration 
(((RX'Y)2))I/2(L), itself being an average (denoted by ((-)))  over the 
configurations of length L, as 

(( (R x, y)2 )) 1/2 ~ LVX, y (2.3) 

By adding interactions to the problem, and hence a temperature, there 
exists scope not only for analysis of a large-L scaling behavior, but also 
of fully thermodynamic phenomena. One goal is then the solution of the 
limiting free energy per step/monomer 

1 
f ~( T) = - k  b T l i ra  -~ log QL( T) 

This function of (real) temperture contains (usually) a lone singularity, that 
is, there exists a (thermodynamic) critical point. The phase transition is 
interpreted as a collapse transition where the dominant configurations at 
high temperatures are elongated, relatively thin though rough, that 
"collapse" under stronger interactions (lower temperatures) to rather fatter 
ones. A set of canonical critical point exponents is defined at the singular 
point. In addition to the thermodynamic limit, the limiting behavior itself 
is of interest in physics as in the case of free walks. The set of finite-length 
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scaling exponents takes on three different values, depending on the tem- 
perature, one at high temperatures, one at the critical point (To), and 
another in the collapsed phase. As one may expect, the high-temperature 
values are identical to those of free walks. 

It is difficult, however, to sum directly the partition function for fixed 
lengths and so an alternate route is usually followed. A generating function 
G(T, z ) = ~  zLQL(T) is calculated instead. This can be viewed as simply a 
mathematical device, being a Laplace transform of a kind or as the physi- 
cal consideration of a new ensemble. This ensemble, referred to as a 
generalized ensemble because it has no independent parameter that is 
varied to produce the thermodynamic limit, is one of a single polymer 
chain in contact with a particle bath of monomers. The resulting "phase" 
diagram (or more precisely a singularity diagram) in the z-T plane (see 
Fig. 3) is summarized as follows. At any temperature there exist values of 
z small enough that the generating function converges. The generating 
function has a radius of convergence 0 < z~(T) for all temperature (given 
that the thermodynamic free energy exists). The radius of convergence is in 
fact related to the thermodynamic free energy as 

zoo(T) = exp[fif o,( T) ] (2.4) 

Thus the shape of the radius of convergence gives directly information 
about the canonical free energy and hence some of the critical point 
exponents. The thermodynamic limit in the generalized ensemble can be 

~ 1 \\~I\ z=l/~, 
0.5 \\Unphysical region 

(0,0.453...) \ 
0 . 4 ~ ~  ( 1,0.41 ~..,) \ \  

"~ \ Tricritical point, 
\ \  (3.382975...,0.295597.,.I 

0.3 

Finite size region 
0.1- 

O.O- I I I I I I 
1 3 4 5 

w - temperature variable 

Fig. 3. The singularity diagram for the discrete IPDSAW model. Points whose coordinates 
were previously known exactly are shown. This diagram has been calculated from the 
continued-fraction expansion described in Section4. The singularity diagram for the 
continuous model is similar. 
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taken as the limit z ~ z ~ ( T )  as long as the generating function diverges 
smoothly as the limit is taken/1~ This condition is fulfilled at temperatures 
down to and including the collapse temperature. Under these conditions 
and in the thermodynamic limit averages in the canonical ensemble 
converge to the same value as the same property averaged in the 
generalized ensemble. Moreover, the strength of the singularity of the limit 
itself (as measured canonically by the finite length exponents) in both 
ensembles can be simply related. Hence, the exponents 7 and v x'y can be 
calculated in the generalized (also referred to as a grand in some of the 
literature) ensemble rather than directly from the (canonical) definitions 
above. Let us examine this so-called phase diagram further. First, the 
region z > z~ is not of interest usually, even though by suitably extending 
the problem (by introducing a finite lattice and hence a volume parameter) 
the radius of convergence may be interpreted as a phase boundary in the 
z - T  plane. Below z ~ ( T )  the average walk length is finite (as calculated in 
the generalized ensemble). At high temperatures and also at the critical 
temperature the average walk length diverges on approaching the radius of 
convergence. One may expect this, of course, if the canonical limit L ~ 
is equivalent to the limit z ~ z~(T) .  At low temperatures the average walk 
length stays finite at z~(T).  It is expected that at low temperatures there 
exists an essential singularity on z~ (T )  in analogy with the Fisher descrip- 
tion of the condensation of a fluid. It1) The low-temperature line is then 
analogous to a line of first-order transitions. In the same vein the "critical" 
point can be seen to be analogous to a tricritical point in the z -  T plane. 
In fact, a tricritical point is precisely what is expected at the collapse trans- 
ition (or 0-point) of polymer systems. It is this tricritical point that will be 
the focus of our study. We shall refer to the thermodynamic critical point 
or collapse transition at Tc as a tricritical point and indeed see that the 
crossover phenomenon associated with such a point does occur in our 
models. 

We shall now define the exponents that characterize the tricritical 
point. In anticipation of our results, we describe the scaling picture that is 
expected at the collapse transition using the assumption of conventional 
tricritical scaling. It is the calculation of these exponents and confirmation 
of this scaling picture that form the kernel of this paper. 

The most common canonical exponents calculated at the (tri-)critical 
point are ~ and ~x. y (x and y denote the horizontal and vertical directions, 
respectively). The ~ exponent desibes the singular part of the free energy 
near Tc as 

f~ngular part(T) ~ t 2 - ~ (2.5) 
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where t =  T - T e .  The F exponents are defined through an appropriate 
thermal correlation length as 

~x,y ~ t-~x.. . (2.6) 

Please note the use of tildes to differentiate these (canonical) ther- 
modynamic exponents from the length scaling exponents. 

One can define the finite length scaling exponents ~, and v x'y via the 
partition function and the horizontal/vertical radius of gyration at any 
temperature in the same fashion as in the infinite-temperature case. Three 
separate values of these exponents are possible, depending on the tem- 
perature, and we denote the high-temperature values simply with the same 
symbols as the free walk definitions, while we denote the tricritical point 
values by the addition of the subscript t, such as 7,. The exponents at high 
temperatures and at the tricritical point can also be calculated using the 
generalized ensemble and so we give the appropriate definitions used in this 
ensemble. (Strictly speaking, we should use different symbols for these a 
priori.) The new set of 7 exponents is defined through the divergence of the 
generating function (since the partition function and generating functions 
are related via the Laplace-like transform) as 

G(z, T)  ~ Az  -~ (2.7) 

at high temperatures, where d z  = z o o -  z, and 

G(z, T)  ~ d z  -~' (2.8) 

at To. The radius-of-gyration exponents are defined through the average 
horizontal/vertical length calculated in the generalized ensemble (these 
averages are denoted ( - ) ) .  We have 

(Lx ._ , )  ~ d z  - vx '  (2.9) 

at high temperatures, and by adding the subscript t a similar equation 
denotes the tricritical definition. (Here (Ly)  is the average vertical length 
of a single vertical segment, rather than the average number of vertical 
steps, whereas (Lx)  is the average number of horizontal steps.) The above 
formulas are easier to tally with the previous definitions when it is realized 
that the existence of the exponent 7 ensures the following behavior: 

( L )  ~..Az 1 (2.10) 

for the average total length (L ) .  
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The generalized canonical exponent ~ describing the singularity of the 
shape of the radius of convergence can be related to ~, the exponent of the 
singular part of the free energy (2.5) through the relationship (2.4). We 
clearly have 

0--= 2 -  ~ (2.11) 

In addition, the generalized canonical exponents v~ 'y, measured 
approaching Tc along the radius of convergence, are expected to reproduce 
the values of the canonical gx, y respectively, since above Tc the calculation 
of quantities such as a thermal correlation length will result in identical 
results in the two ensembles. (1~ These could be found then by calculating 
a two-point correlation function as in Nordholm's work. (1~ We choose to 
calculate these exponents by considering the average length scales (Lx, y) 
in the grand ensemble (assuming the existence of only a single length scale 
in the problem near To), approaching the tricritical point sitting at the 
radius of convergence below Tc. These averages converge at the radius of 
convergence when T<  To. This simpler method has been chosen to 
illustrate the power of the generalized ensemble even below To. (Our 
results are in agreement with Nordholm's method.) 

The description of the collapse transition in the generalized ensemble 
can be given succinctly with the assumption of the transition point being 
a generic tricritical point. This allows us to write the scaling form, for 
positive t, 

G(Az,  t) "~ A z - ~ ' 6 ) ( A z - l t  1/~) (2.12) 

where 

~ ( x - x c )  ~, x ~ x c  (2.13) 
O(x)  ~ ~const, x ~ 0 

where x c is related to the radius of convergence. This introduces the 
crossover exponent ~b. Contained in our assumption is the relationship 

~9 = 1/~ (2.14) 

(Please note that this definition of ~b deviates from the conventional 
tricritical usage where it is defined so that ~b= ~, but is chosen here to 
coincide with that most common in the literature concerning the O-point.) 
Considering a similar scaling form for the length scale exponents gives 

= XvX= v t / v  u. Making an analogous assumption for negative t adjusted Yt  u Y Y 

for the fact that the generating function does not diverge on the radius of 
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convergence (given that if exponents exist on this side they will be the same 
as their positive t counterparts), we have 

G ( t )  ,,~ t - ~  (2.15) 

where ~u = y,/~b. (The exponent 7u can be also found in a t a n g e n t i a l  high- 
temperature approach along the phase boundary to the tricritical point.) 

This scaling assumption has consequence for the scaling of the free 
energy and partition function in the canonical ensemble. Without going 
into detail, since we do not use the canonical ensemble for calculation, 
scaling forms may be written down using basic crossover forms where there 
is a single crossover exponent ~b and the relationship 2 - ~ =  1/~b is 
automaticaly satisfied. 

The above summary has defined the major exponents discussed in the 
following sections and sets the scene for the calculation of these exponents 
and the scaling function defined in (2.12). The more general consideration 
of the tricritical scaling assumption in walk-type problems has been dis- 
cussed by Owczarek et  a/. (12) and Brak et  al. ~13) In addition, there exists a 
recent numerical study of the collapse phase by Prellberg et  al. (14) 

3. C O N T I N U O U S  I P D S A W  

In this section we analyze a continuous version of the IPDSAW 
problem. The great virtue of this approach is the neat and direct calcula- 
tion of exponents and scaling functions. While the discrete model has been 
examined in other publications, this is the first place the continuous version 
has been considered. The rewards for doing so flow the fact that the solu- 
tion is expressed in terms of Bessel functions whose asymptotics have been 
well studied. The occurrence of Bessel/q-Bessel functions in problems where 
the configurations are the continuous/discrete directed walk problems 
seems generic. We begin by discussing the definition of the model and the 
various partition and generating functions of interest. 

The configurations of the continuous IPDSAW are partially directed 
walks where the length of each vertical segment is allowed to assume real 
values. Such a freedom would be natural when considering a model for 
short monomer polymers (and so a walk model with short step length) and 
also in a course-grained formulation of the original discrete model. This 
leads to the examination of the limiting process that would result in our 
continuous model (starting with the discrete case) and forms the crux of 
Section 5. Note that because of the directed nature of the problem the 
continuous model is noticeably asymmetrical (the horizontal length, being 
made of single steps, can be made to vanish in the continuous limit). Alter- 

822/72/3-4-22 
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natively, since the horizontal and vertical limits are decoupled, one is also 
able to consider a continuum limit where the horizontal step length 
remains finite, as is done in this paper. Instead, we introduce a dummy 
variable to count the number of vertical segments, which is numerically 
equal to the number of horizontal steps (whatever their length). 

We assign an energy U(rl ..... rN)  to each configuration of length L and 
number of vertical segments N, where each vertical segment, i = 1,..., N, has 
length r,. measured in the positive y direction, giving L=ZN=I  [r~l. This 
energy is given by 

N - - 1  

U(rl,...,rN) = - J  ~ u(ri, ri+l) (3.1) 
i = 1  

where 

u(ri, ri+ t) = min(Iri], [ri+ ~1) ~ (  --riri+ 1) 

and ~ ( r )  is the Heaviside step function: 

(3.2) 

t 0, r <0  

~ ( r ) =  1/2, r = 0  (3.3) 

[1,  1 > 0  

The function u(rl, ri+ 1) measures the overlap of successive segments. This 
model differs from the ZL model in that successive segments need not fold 
back at each horizontal step, hence the complication of the Heaviside func- 
tion in the energy. We consider the case of attractive monomer-monomer 
interactions where J~> 0. The thermodynamics can be deduced from the 
canonical partition function 

) QL(co) = d r l . . ,  dE N (~ [ril -- L co 2~"(r''ri+') (3.4) 
N = I  - - o o  - - o o  i 1 

where the Dirac delta function restricts the "counting" to fixed-length 
(equal to L) walks and co = exp(/3J) >/1. The free energy in the ther- 
modynamic (long-walk) limit is defined in the usual way as 

f(co) = - k ,  r2imoo 1 Z log QL(co) (3.5) 

For mathematical convenience, then, it is easier to work in the 
generalized ensemble of fixed monomer fugacity y (so that the length is 
now allowed to vary). To this end we define the generalized partition 
function as 

fj G(y; co)= yLQL(o) ) dL (3.6) 
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This is the Laplace transform of the partition function and therefore can be 
inverted if required, provided the usual conditions apply. We will, however, 
calculate thermodynamic averages in the generalized ensemble, although 
noting the restrictions pointed out by Nordholm/m) For small enough y 
the generalized partition function is finite. Interest lies in the radius of 
convergence y~(co) of this function, since this is directly related to the free 
energy via 

f(co) = k B Tlog Yoo(co) (3.7) 

The variable y is conjugate to the length and so plays the required role of 
providing information indirectly about the finite-length scaling. 

We now perform some manipulations similar to those that led to a 
solution in the discrete model. By interchanging the summation and 
integration, G(y; co) can be rewritten as 

G(y; co)= ~ ZN(y; co) (3.8) 
N=I 

where 

Z~v(y; co) = f ~ . . f ~  dr1" o, drNe eECril (3.9) 

and 

N N--1 
-fiE[r,] = -~ ~ Xril +flJ ~ u(ri, ri+,) (3.10) 

i~  i i~  1 

where v > 0 and is defined through y = e x p ( - v ) <  1. As an aside, we note 
that if the local interaction u(ri, ri+~) were an absolute difference, then the 
energy would be that of a solid-on-solid (SOS) model with a magnetic field 
term. The generalized partition function G(y; co) as a function of the 
temperature (interaction energy) co ~> 1 and fugacity y < 1 is the goal of 
solution. We extend our aim (with a view to obtaining extra detail in the 
solution) by the introduction of a counting variable x ~ 1 for the number 
of folds (or horizontal steps) 

G ( x ,  y ; c o ) =  ~ x N Z N ( y ; C O )  ( 3 . l l )  
N=I 

We also now introduce the function ~N(Z), which is defined fully as 

f 
oo 

~VN(Z)= dtexp[-r j t l  +fiJmin(ltl, I z t ) ~ ( - t z ) ]  2~ N l(t) 
--oo 

(3.12) 
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and 

Hence 

Y'0(Z) = 1 (3.13) 

ZN(y; CO) = Y'N(0) (3.14) 

We will therefore be interested in finding G(x,y; co) via the generating 
function N(z), where 

~(z)= ~ XN~N(Z) (3.15) 
N = I  

and hence 

G(x, y; co) = ~(0) (3.16) 

To find the generating function, we find an integral equation which 
satisfies. The integral equation is reduced (with loss of boundary condition) 
to a differential equation. The solution to the differential equation is then 
substituted back into the integral equation to fix the constants of the 
differential equation's general solution. Finally, z = 0 is substituted into the 
solution to find G(x, y; co). The method is closely related to the solution of 
the discrete case and one can view N(z) as related to the generating 
function for continuous walks where the first vertical segment is of length 
z. To find the required integral equation, the recursive formula for ~N(Z) 
is substituted into the equation for N(z). The summation and integration 
are interchanged, resulting in 

f 
o o  

~ ( z ) = x  dt{exp[-vltl+flJmin(Itl, l z l )~( - t z ) ]}[~( t )+l]  (3.17) 
- - o o  

This equation is valid for all real z. The function ~(z) is even, so we need 
consider only the half-line [0, oo). Splitting the range of integration about 
zero and then expressing the result as a single integral on the half-line 
[using the even property of N(z)], we can reformulate the integral 
equation as 

~ ( z ) = x  dt {exp(-tt)+expE-tt+flJmin(t,  Izl)] }[(~(t)+ 1] (3.18) 

The min(. ) function can be rewritten in terms of sums and differences; that 
is, 

rain(x, y ) =  �89 + y ) -  �89 Yl (3.19) 
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and so by multiplying by e x p ( - f l J z / 2 )  we obtain 

N ( z ) = e  xz(q(z) = d t e - H t ( e - X ( t + Z ) + e - K I t - z l ) [ o ~ ( t ) + e  - m ]  (3.20) 

where 

and 

K =  fi--J (3.21) 
2 

H =  �9 - f lJ  (3.22) 

Differentiating this integral equation results in the following differen- 
tial equation: 

d2~  
dz 2 - KZ~(z) - 2 K x e - H z [ J ~ ( z )  + e-KZ] (3.23) 

We preempt Section 6 by remarking that the differential equation above 
also occurs in the work of Zwanzig and Lauritzen, even though the integral 
equation (and hence the solution) does not appear. It is convenient to 
make the substitutions 

u = ae-Hz/2 (3.24) 

where 

and 

8Kx  
a 2 -- H2 (3.25) 

F(u) = ~ ( z ( u ) )  (3.26) 

to give 
2 d2F dF - u 2 + ~" 

u ~ u 2 + U - ~ u + ( U 2 - ) f l ) F ( u ) =  a* (3.27) 

where 

2 = 2 K / H  (3.28) 

This is an inhomogeneous form of Bessel's differential equation. The 
general solution can be written down immediately as 

__/./2 
F(u) = - - 7 +  C1J~(u) + C2J_  ~(u) (3.29) 
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This solution is then substituted back into the integral equation to 
determine the constants. By equating orders, the constant C2 is seen to 
vanish and the remaining constant is given by 

aH 
Ct =4xJ~(a) (3.30) 

so that the complete solution is 

aHeXZJ~.(ae -xz) 
1 + fq(z)  -- ( 3 .31 )  

4xJ'~(a) 

Simply substituting z = 0 allows us to express the full solution as 

where 

1 + G(x, y; co) = a -1J2~(a2) (3.32) 
J;~(tr2) 

a = (3.33) 

and, reiterating, 

2 =  flJ (3.34) 
*r - f l  J 

while co = e t~s and y = e-~. 
The expression has been derived assuming )~>~0 or r>~flJ, which 

translates to y ~< co- 1. The ratio of the two Bessel functions is meromorphic 
and diverges at the zeros of the denominator. Note that a = a(x, co) and 
2=;~(y, co), so that the counting variable and the length fugacity play 
asymmetric roles. Quantities of interest are first the generalized partition 
function itself 

G(y; co)= G(1, y; co) (3.35) 

which is found simply by using a = a(1, co) without changing the order )~ 
of the Bessel function. The average number of segments is given by 

( N )  = ~3 logoG(X,log x y; co) x= 1 (3.36) 

and the average length by 

log G(1, y; co) 
( L ) -  

6 ~ log y 
(3.37) 
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The radius of convergence y~(co), and so the free energy, can be found 
implicitly. The generalized partition function G(y; co) diverges when 

J~(a2) = 0 (3.38) 

and the solutions to this equation depend crucially on whether a is less 
than or greater than one. In fact, the condition ~ = 1 or 

3 c J = 4  (3.39) 

describes the critical point in the system. For a given high temperature 
such that a(co) > 1 there exists a smallest (nonzero) finite positive solution 
of (3.38) for 2 or (translating) a solution for y =  Y~o(co) in the interval 
(0, co 1). If the temperature considered changes and approaches that 
defined by the condition (3.39), then the solution 2 approaches infinity and 
y~(co)~co  -1. For low temperatures, o-(co)<l, the generating function 
converges for all y e [0, co- 1 ]. There is an infinite sequence of poles above 
co 1 that accumulates there, hence y~(co)= co-1 for co >~ co C. 

Our rewards are now at hand. The generalized partition function can 
be seen to have a isolated pole singularity for high temperatures, so the 
standard exponent 7 = 1. Below the critical temperature the generalized 
canonical 7 does not exist, which implies that the standard ansatz for the 
asymptotics of the partition function (in L) does not hold in the canonical 
ensemble. At the critical temperature 7 ,=  1/3. We note again that ( L )  
diverges with a simple pole provided ~ exists. In fact, it is possible to write 
down the complete scaling form around the critical temperature for the 
generalized partition function as 

( ~ ~1/2 Ai(22/3~) )1/3 (3.40) 
G(y(2);co(~))~ - \ ~ ]  Ai,(22/3~) 

where ~(a), the temperature scaling variable, is defined differently above 
and below the critical point as 

2~3/2 l o g l + ( 1 - a 2 )  1/2 - = (1 - a 2 )  '/2 (3.41) 
3 a 

for a < 1 and 

(_~)3/2 = (~2 _ 1 - arccos 

for a > 1. Note that 

I~1 ~ 11-~21 ~ I T -  Tel 

(3.42) 

(3.43) 
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for a ~ 1 and that 

1 
I~1 (3.44) 

lyoo(coc)-Yl 

for y ,~ y~(Oc) and a ~ 1. The differing high- and low-temperature defini- 
tions of ~ hint at the underlying gross asymmetry in the collapse transition 
physically. This can be clearly seen from the free energy: in the collapsed 
phase (low temperature) the free energy is a constant (hence the entropy 
is zero!), while above the critical temperature the free energy has a well- 
defined singular variation. The approximation above has the tricritical 
scaling form mentioned previously. From this scaling expression the 
crossover exponent ~b = 2/3 is simply extracted. This is consistent with 
the divergence of the generating function on approaching the critical tem- 
perature from below fixed at the radius of convergence y~  ( o ) =  o -1 ,  since, 
for 09 > oc, 

G(y~ ; m) ~ (co-  oc) 1/2 (3.45) 

which confirms 7u = 7,/~b = 1/2. The average number of segments, which is 
equal to the number (not length of) the horizontal steps, is given by 

( N )  - ~r2[J')'(cr)O/J~(a2), - (a - 2 -  1) J;~(~r2)/J'~(~r2)] (3.46) 
211 -- crJ'(crZ)/J;.(a2)] 

Even though N is strictly not a length, we use it to define a horizontal scale 
and in turn an exponent v x. Nordholm defines a true correlation length 
which produces identical results for the ZL model. This quantity diverges 
on approaching y~  for high temperatures with a simple pole, so we assign 

vX= 1 (3.47) 

whereas at the critical temperature 

v; = 2/3 (3.48) 

found from (3.46). Again this agrees with the crossover scaling expectation 
for the exponent 

%=x 1 =v~/O (3.49) 

The shape of the radius of convergence curve, which defines the 
exponent ~ and is found independently from analysis of (3.28), gives 
~9 = 3/2. This is consistent with is consistent with the hypothesis of general 
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Table I. High-Temperature Exponents 

Exponent 7 v x v y 

Value 1 1 1/2 

tricritical scaling, which demands ~p = 1/~b. As mentioned in the previous 
section, utilizing the fact that the radius of convergence curve is the curve 
is the plot of the free energy, the canonical specific heat exponent is 

= 2 - ~ = 1/2 (3.50) 

All these exponents agree, as we shall see, with those that can be found, 
making some scaling assumptions, from the discrete model. A complete set 
of exponents set of exponents can be deduced, 2 including 

v-~ = 1/3 (3.51) 

and 

v , -  y - 1/2 (3.52) 

(Remembering that using arguments found in Nordholm's paper, 'I~ we 
have U 'y = v~'L) 

It is then worthwhile to note that the normal hyperscaling is satisfied 
at the tricritical point 

9 x + , T Y = 2 - ~  (3.53) 

since the equation, also satisfied, 

2 - g = 1/~b (3.54) 

is believed can be understood as a "fractal" hyperscaling relation. This 
exponent relation has been discussed recently in work on the general 
assumption of tricritical points. 

We now summarize our values for the exponents in Tables I and II. 

2 Foster has subsequently calculated v~: and vY. ~5~ 

Table II. Tricritical Exponents 

Exponent ~ v~ v~ ~u v~ v~ ~ ~ 
Value 1/3 2/3 1/3 1/2 1 1/2 1/2 2/3 3/2 
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4. DISCRETE MODEL 

Here we describe and analyze the discrete IPDSAW model. Although 
this model has been solved previously, (3) much has been added to the 
understanding of the solution itself. In particular, a deeper analysis of the 
properties of q-Bessel functions leads to the understanding of the critical 
behavior of the model. 

We start with the description of the model and present a solution 
within the generalized canonical ensemble. The existence of a singularity in 
the free energy as a function of the interaction energy in the thermo- 
dynamic limit and hence a phase transition are shown. Then, utilizing a 
continued-fraction expansion of the solution, analytieity properties of the 
generating function are proved and the structure of the critical point is 
investigated. In particular, we compute the exponents of the associated 
tricritical scaling form. 

The configurations of this model are partially directed walks on a 
two-dimensional square lattice with nearest-neighbor interactions. For later 
convenience, we demand that these walks end with a horizontal segment. 
Due to the directed nature of this problem, we can describe these 
configurations in a natural way through the length ri of vertical segments 
between two horizontal steps, measured in the positive y direction. Thus, 
we associated to each configuration an N-tuple (rt, r2 ..... rN)  corresponding 
to a configuration of total length L = Y~N=I IriL + N. 

The energy due to the nearest-neighbor interactions for each of these 
configurations is then 

U ( r l ,  r2,. . .  , r u )  -~- - - J U ( r  l ,  r2,. . .  , r N) (4.1) 
where 

N - - I  

u(rl,r2 ..... rN)= ~ min(Iril, Iri+ll)Jtt~ (4.2) 
i--1 

We assign weights x for steps in the horizontal direction and y for steps in 
the vertical direction. The canonical partition function as a sum over all 
possible configurations of fixed length L is then 

L 

QL(x,y, ~) = ~ x u ~ ,L-Nco,(r,,r2 ...... u) (4.3) 
N : I  Ir iI  + [r2[ + . - .+[rN[=L--N 

where we have set ~o = exp(flJ). We get the generalized partition function 
by summing over all possible lengths, 

G(x, y, ~) = ~ QL(x, y, ~o) 
L = I  

= z . . . . . .   4.4/ 
N = I  M = 0  I r l [ +  Ir2l + , . .  +IrNI=M 
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so that we have 

dz 
QL(x, y, co)= [zL]G(zx, zy, co)= w=. G(zx, zy, co) 

z L +  1 d,7"Cl 
(4.5) 

In the Appendix, we consider a generalization of this model which differen- 
tiates between steps into the positive and negative y directions and thus 
allows for, e.g., the modeling of an external field. 

In order to derive an expresion for G(x,y, co), consider now the 
generalized partition functions Gr = Gr(x, y, co) for walks that start with a 
vertical segment of height r, so that 

G(x, y, co) -= ~ G~ (4.6) 
r =  - - o o  

Then we can concatenate these walks to get a recursion relation for Gr as 
follows: 

G,-= xylr' { l + ~ cou(r's)Gs} (4.7) 
$ ~ --oo 

It follows that 

Go = x{ 1 + G(x, y, z)} (4.8) 

Using the symmetry Gr = G r and then restricting to r >~ 0, we can further 
simplify to 

Gr=xyr{l+ ~-" Gs-t- ~-~comin(r'~')Gs} (4.9) 
s = 0  s =  i 

which will be the starting point of our investigation. 
We will now derive a homogeneous second-order difference equation 

which we can solve using an ansatz from ref. 1. Using the scaling behavior 
of the solutions, we can eliminate one of the two linearly independent 
solutions. We then write the general solution of (4.9) as an expression 
involving the quotient of two q-hypergeometric functions. 

Taking differences in (4.9), we first eliminate the inhomogeneous term, 

s = r + l  

Here we introduced for convenience the new variable q = yco. Upon taking 
differences a second time, we are left with 

(Gr+2-yGr+,)-q(Gr+l-yGr)=-xq"+2(1-t)Gr+, (4.11) 
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In the case of no interaction (09 = 1), the right-hand side of this equation 
is zero and we have a simple homogeneous difference equation with 
constant coefficients. Its characteristic polynomial P(2) is 

P(2) = (2 - y ) ( 2  - q) (4.12) 

and the solution is given by G,. = A1 y" + A2q r. 
This motivates the ansatz/1) 

G,.=2 r ~ q'~"c,, (4.13) 
n = 0  

with c, = c,,(x, q, o9) independent of r, which inserted into (4.11) gives 

P(2)Co+ ~, q'rIP()~q")cn+xq(1--1)2q"cn 1 ] = 0  (4.14) 
n = l  

This equation is solved by 

P()~)=0, i.e., ) . l = y  and 22=q  (4.15) 

and, choosing Co = 1, 

~-I --xq(1 - i/~o) )~q" [ - x ( l  - 1/co)2]nq (~) 
Cn = 11 -- (4.16) m = 1 P(2q '~) (209; q). (2; q). 

Here we have used the standard notation 

( x ; q ) . =  f l  ( 1 - x q  m-I)  (4.17) 
m = l  

Defining 

- ~ q(~)(- t )n  
H(y, q, t ) -  (4.18) 

,=o (Y; q)n(q; q), 

we now can write the general solution of (4.11) as 

Gr= Al yrg (y, q,x ( 1 - 1 )  ql +r) + A2qrH ( qto, q, xco ( 1 - 1 )  q l +r) 

(4.19) 

We remark that the function H is directly related to a basic hypergeometric 
function (16) 

H(y, q, t )=  1~1(0, y; q, t) (4.20) 
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which can be seen to be a limiting function of 2~bl and that is the q-defor- 
mation of the more familiar hypergeometric function 2F1. Analogously, the 
function H can be understood (apart from some normalizing factors and 
seen by taking tl-Je limit q ~ 1) as a q generalization of Bessel functions. 
Furthermore, as will be seen in the following sections, formally taking the 
continuum limit vertically transforms Eq. (4.11) into Bessel's differential 
equation. Therefore, the solution above is also related via this second limit 
to Bessel functions. In this section, the understanding of the singular 
behavior of H is at the core of deriving the critical exponents. 

Returning to the analysis, we see that, for ]q[ < 1, H(y, q, tq r) is 
uniformly bounded in r, so that we can write 

]G~I ~< const- (q,'+yr) (4.21) 

This we insert into (4.9) and, assuming 0 < co2y < 1 < co, we get 

]Gr[~<const-y r 1+  ~ (coq)S+cor q, 
s = 0  s = r  

~< const - y [ 1  + (coq)r] 

~< const �9 y~ (4.22) 

As H(y, q, tq r) --* 1 for r ~ o% we see that in fact A2 =0. The reason for 
this is that we obtained the homogeneous difference equation (4.11) by 
taking differences from (4.9), thus introducing additional solutions. 

The boundary conditions for Go and G1 from (4.9) are 

6o=x  1 Gs+ =x{l+G(x,y, co)} (4.23) 
= s = l  

and 

s = 0  s = l  

1 - c o  1 - c o  (1 G(x,y, co)} (4.24) 

so that we can write down the solution for G(x, y, co) as 

1+ G(x, y, co) = - 5 - -   -oo - / 1  +co t - - 5 - +  x (4.25) 
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and, upon inserting the quotient of the q-Bessel functions, 

H(y, q, qt) 
.3r q, t)--- (4.26) 

H(y, q, t) 

we get 

1 + G(x ,  y ,  co) = 
1 - c o  

2[Yf(y,  yco, xy(co- 1 ) ) -  1] + (1 - co)(1 - x )  
(4.27) 

We remark that we could have arrived at the same result by 
immediately inserting the ansatz (4.13) into the recurrence relation (4.9). 
However, the above approach has the virtue of being more transparent. 

In the further analysis of JC~(y, q, t) we restrict ourselves to the region 
Iq[ < 1, but first we note that the q-Bessel functions converge for Iql > 1 as 
well, and that they are related by 

17 
H(y,q, q t ) = H ( ~ , q  ~) (4.28) 

so that we have 

:~ f f (y ,q , t ) j f (1- ,1- ,~)=l  
kY q 

(4.29) 

However, there is an essential singularity at q = 1. 
Further functional equations for H(y,q, t) enable us to 

continued-fraction expansions for Yf(y, q, t). We have in particular 
derive 

H(y, q, t) - H(y, q, qt) - 
t 

H(qy, q, qt) 
1--y 

H(y, q, t) - H(qy, q, t) = 
ty 

(1 --y)(1 - q y )  
H(q2y, q, qt) 

H(y, q, t) - H(qy, q, qt) = 
t 

(1 - y ) ( 1  - q y )  H(q2y' q' qt) 

so that with defining 

H(qy, q, qt) 
flY(y, q, t) 

H(y ,q , t )  

we get 

t 
jUf(y, q, t ) =  1 - ~ ( y ,  q, t) 

1 - -y  

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 
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and 

{ t l l  q2Y t jT~(qZy, q, qt )]- l}  -~ 
~ ( y ,  q, t ) =  1 (1 -y ) (1 -q y )  (1-qy)(1-q2y) 

(4.35) 

which defines a (Stieltjes type) continued-fraction expansion for ~ .  
Utilizing theorems in Section 54 of ref. 17, we see that for Iq[ # 1 this 
expansion converges to a meromorphic function in t in the whole complex 
plane. Moreover, the convergence is uniform in any domain excluding the 
poles of this function. As the continued fraction converges uniformly in a 
neighborhood of the origin, it is equal to its power series expansion. 

Note that the expansion (4.35) is fundamentally different from the 
continued fraction given in ref. 18. In particular, it has the advantage of 
having a much larger domain of convergence, and thus facilitates numerical 
computations of the generating function for all [ql ~ 1 (with much better 
convergence when compared to series expansions). The continued fraction 
has been used in the computation of the phase diagram in Fig. 3. Also, all 
exponents given below can be calculated numerically using this expansion. 

The above results do not include q =  1; however, in this case (4.35) 
yields a simple quadratic equation for ~ ( y ,  1, t), giving rise to square root 
branch points at t 2 - 2 ( 1  +y) t+ ( 1 - y ) 2  =0.  

As we will use the continued-fraction expansion given by (4.35) for our 
further analysis, it is convenient to express (4.27) in terms of ~ ,  

1 + G(x, y, co) - 1 - y  (4.36) 
(1 - x ) ( 1  - y ) -  2xyjT~(y, yco, xy(~o- 1 )) 

in a way suggestive of the singularity structure needed to discuss the phase 
diagram. We only need to discuss the singularity closest to the origin. This 
will be on the positive real axis, as G is a power series with positive 
coefficients. There are two ways for this singularity of G to arise. First, 
G can have a pole, corresponding to a zero in the denominator, i.e., we 
have 

2xy~(y,  yog, x y ( ~ -  1))= (1 --x)(1 - y )  (4.37) 

From the continued-fraction expansion it is clear that the locus of 
these zeros depends analytically on co, as long as yc~ = q < 1. Second, if 
there is no zero of (4.37) for yco < 1, then the closest singularity is given by 
the essential singularity of J~ at yc~ = q = 1. On this line, we can insert 
~ ( y ,  1, x ( 1 - y ) )  into (4.37) and see that the two singularities coincide 
precisely at the square root branch point of that solution, given by 
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c0c(x, y). For co < coc we have a simple pole singularity and for co > coc we 
have an essential singularity (G attains ino fact a finite value). For more 
details see ref. 18. 

Now we proceed to the calculation of the exponents. First, we note 
that the square root branch point gives an exponent of 7u = 1/2. The central 
problem in the computations of the exponents away from the line q = 1 is 
that we can get explicit expressions for ~ ,  and thus for G, only on the line 
q = 1. However, we can compute partial derivatives of all orders on q = 1 
by differentiating (4.35) and inserting ~ ( y ,  1, q). Thus, we can deduce 
information about the critical structure from their divergences as co--* cot 
from above. Due to the structure of (4.35), the computations are rather 
cumbersome and the derivatives grow rapidly in size, which necessitates the 
use of a symbolic manipulation program. In what follows, we therefore 
refrain from stating explicit equations. 

Due to the existence of all higher-order derivatives on the line q = 1, 
we are justified in writing an asymptotic series expansion of ~ in ~ = 1 - q, 
i.e., 

~ ( y ,  1 -e ,  t)~ ~ ff(~)(y, t)e n (4.38) 
n = 0  

Inserting this equation into (4.35), multiplying out, and sorting by powers 
of 8 yields an iteration scheme for ~(") (y ,  t). This iteration scheme shows 
in particular that in the neighborhood of the branch point o~(")(y, t) 
diverges with exponent 

7(,")=7,+nA with 7u=�89 and A = ~  (4.39) 

This "gap exponent" A is consistent with a tricritical scaling ansatz which 
links A to the crossover exponent ~b as 

1 2 
~ b = 5 =  5 (4.40) 

Now consider the computation of 7 ,  i.e., the divergence of G(x, y, coc) 
for y ~ 1/coo. It can be shown that 

~G~y G -4 . . . . . .  v = l/~c (4.41) 

has a finite value. Assuming that the exponent exists, we therefore get 

( - 7 , -  1 ) + 4 L = 0  and thus 7,=�89 (4.42) 
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This independent confirms the above value of the crossover exponent 

~b=Yt = 2 (4.43) 

A slightly more indirect approach leads to the computation of the 
shape exponent 0 = 2 -  ~. For this, we compute the shape of the level lines 
yt(co) from G(x, yl(09), ~o) = l at yt(co) = 1/~o and then let l ~  ~ .  Analysis of 
these results shows that 0 = 3/2, which confirms ~ = 1/~b. 

Therefore, by making an asymptotic expansion and relating this to 
tricritical scaling, we are able to calculate exactly the rational values of the 
exponents at the 0-point. 

5. C O N T I N U U M  LIMIT 

The continuous model and the discrete model can be directly related 
by taking the continuum limit. If the size of the edges of the lattice, a, are 
put explicitly into the equations of the discrete model and the limit a ~ 0 
is taken, then the continuous model is obtained. (In order to obtain the 
continuous model, only the lattice constant in the vertical direction must 
be allowed to shrink.) Before taking this limit it is necessary to determine 
the length dimensions of the objects occurring in the equations. As noted 
in Section 3, fq(z) is the generating function of the partition function ~N(Z), 
but it is equally valid to interpret it as a generalized (or grand) partition 
function for continuous walks whose first vertical step has length z. Thus 

f#(~) dz = probability the first vertical step has length between z and z + dz 

(5.1) 

where JV = S~ ~(z)dz. As probabilities are dimensionless, it is consistent 
for fq(z) to have the dimensions of inverse length. This in turn means that 
the Boltzmann factors xy z have the dimensions of inverse length (which, 
for convenience, we associated with the x factor). 

Returning to the discrete model and Eq. (4.9), we make the change of 
variable from Gr to f#r, where 

Gr= xyr((flr q- 1) (5.2) 

With this change Eq. (4.9) becomes 

( f f r = X ~ o - ~ - X - ~  - ~, x(yS + ys~min(r's))(1 + C~s) (5.3) 
s = l  

822/72/3-4-23 
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Now we make the length dimensions explicit by inserting the lattice 
constant a to give 

~ar = axf#o + ax + ~ ax(S s + yaso9 min( . . . . .  ))(1 -t- Cffas ) 
s=l 

(5.4) 

Now let the lattice shrink to zero, but ensure that the physical length of the 
walk remains finite by taking the limit a ~ 0, with ar and as remaining 

0(3 --")" OO finite. Thus, ar~z ,  as~t ,  and Y',s=la So dt, and hence Eq. (5.4) 
becomes 

(~z = dt x(y t + yt~min(z't))(1 + c~t) (5.5) 

If this is compared with Eq. (3.18) of the continuous model, we see that the 
same equation is obtained with y = e x p ( - r ) ,  co=exp(flJ), and fgz =- f#(z). 
As shown in Section 3, the solution to (5.5) is an expression containing 
Bessel functions. The same result can be obtained from the discrete solution 
if the continuum limit is taken after the solution to the recurence relation 
is obtained. This result demonstrates clearly which expressions in the 
discrete solution become Bessel functions in the continuum limit. 

We begin with the recurrence relation (4.9) and obtain a functional 
equation as follows. Let 

S(v)  = ~ yrG r ( 5 . 6 )  

r = l  

Then, using (4.9), we obtain 

xyv (ylVyv 
S(v)= (1 + Go) 1 - y v  +xS(1) + - -  

+ xS(o~YV) ( l  YV~ yv 1----~yv/O~ 

i ---@;j 

(5.7) 

This functional equation can now be solved to give 

S(v)=x ~ xn{ yqnv [I+Go+S(1)]+S(1) 
n=0 t -yq% 

( yqk IV qkv "~ 
X f l  1-yq~-lv  1-qkvJ 

k = l  

qn + 1 v "~ 
1 __qn+%J 

(5.8) 
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where q = ~oy. Thus, by letting v = 1, we obtain 

S(1) = (1 + fro) Y-(q, Y; Y) + S(1 )[Y-(q, y; y) + Y-(q, y; q)] (5.9) 

where 

f yqk-I qk t 
~--(q,y;t)=x ~ f~tq2 (I 

= o  l - -  t q  '~ ~ =  ~ 1 -  1 
(5.1o) 

and hence 

(1 + Go) Y(q, y; y) 
s ( 1 ) -  (5.11) 

1 - J - (q ,  y; y )  --  J ( q ,  y; q) 

Before taking the continuum limit we once again make the length 
dimensions explicit by inserting the lattice constant a, to give 

(1 + aGo) Y~(q, y; y) SO( l )_  (5.12) 
t --  ~ ~ ( q ,  y; y )  - ~--~(q, y; q) 

with 

.Y-a(q,y;t)=x Z ~t-~-~ fI_ 1 l_y~q-----~l~---1) l _ q ~ j  (5.13) 
n = 0  

Now, taking the limit a--* 0 gives the surprisingly simple results 

lim J~(q, y;y) = F(2) J ;+  ~(a2) 
a ~ 0  

lim ya(q,y;q)= l--F(2) Ja ~(a2) 
a ~ 0  

lira Sa( 1 ) = 
a ~ l )  

J.: + 1 ( o ~ )  

J~_ 1(o-;) - J~ + ~ (a,~) 

(5.14) 

where F and J~ are the gamma function and Bessel functions, respectively, 
a = (4x/flJ) 1/2, and 2 = flJ/(r - flJ). 

Now, as G"(x, y; o)) := ~ =  ~ aGr = ago + 2Sa(1), in the continuum 
limit we obtain 

2J,~+ l(z) G(x, y; oJ) := lira G~(x, y; ~) - 
~ o  J~_~(z)-J~+m(Z) 

(5.15) 



764 Owczarek e t  al. 

and hence, by using Bessel functions identities, we obtain 

, J~(~r)o) 
1 + G(x, y; oJj = a ~ )  

This is precisely the continuum model result [cf. Eq. (3.32)-]. 

(5.16) 

6. C O N N E C T I O N S  

When the IPDSAW model was studied previously the similarity of the 
models discussed by Zwanzig and Lauritzen t19'2~ to the IPDSAW was 
noticed. The models can be formally written down in similar fashion and it 
is clear that due to the different set of configurations considered the 
models differ somewhat. In this paper we have shown that the exponents are 
identical where they exist and in fact while solving the continuous version 
the same differential equation occurs. Here we resolve the tantalizing 
similarities by showing that one set of problems follows from the other, 
using a necklacing ~21) argument. 

The major difference between the models is that in the Zwanzig and 
Lauritzen (ZL) models the configurations are such that at each horizontal 
step the walk is constrained to fold back onto itself (see Fig. 4). The 
absence or not of length assigned to the horizontal steps in the continuous 
versions has been discussed in Section 3 and is not a difference between the 
ZL and IPDSAW models. 

We begin by defining the ZL model at the generalized canonical level. 
In the continuous version the generating function is given by 

G(x, y; ~o)= ~ xNZN(y; r (6.1) 
N = I  

where 

ZN(y; o~)= I~ drl...I~ drNe-~eEril (6.2) 

Fig. 4. A typical configuration of a discrete ZL walk with interaction bonds shown light gray. 



Self-Interacting Partially Directed Walks 765 

with 

N N - - 1  

-~E[re]= -T ~ r~+~J ~ u(ri, r~+,) (6.3) 
i = l  i = 0  

and 

u(ri, ri+l ) = min(r/, /"i § ) (6.4) 

(The lengths ri are defined to be positive in this model.) The definition is 
similar to that of the continuous IPDSAW in Section 4 apart from the 
range of integration in the expression for ZN(y; CO) and the absence of the 
Heaviside function in the energy u(ri, ri+ 1). The discrete model is defined 
analogously with the summations substituted for the integrals in the 
expression for ZN(y; CO). Hence, for the discrete model 

ZN(y;CO)= ~ "'" ~ e -aEErll (6.5) 
r I = 0 r N =  0 

where the energy is given by the same expression as in the continuous case. 
This has the same relation to the discrete IPDSAW that the continuous 
model had to its counterpart. 

As pointed out in the section on the continuous model, the expression 
ZN(y; CO) is similar to the partition function for the SOS model with 
magnetic field term. In fact, in the case of the ZL model there is an exact 
correspondence. Rewriting the energy equation (6.3) as 

N N - - I  

-flE[ri] = - H  • r~-K E {r~ + [re+a-r~] +r~r (6.6) 
i = 1  i = l  

makes this explicit, where H =  z -  flJ and K =  r J~2 as defined during the 
solution of the continuous model. Recently (22) a generating function 
approach has been applied to the discrete version of the two-dimensional 
SOS model in a magnetic field with a boundary potential. Without the 
boundary potential the expression for the generating function is identical to 
that for the discrete ZL model. In the continuous case also this relationship 
is manifest in previous work on the ZL [see Eq. (34) of ref. 19] and the 
SOS models [see Eq. (16) of ref. 23]. These similarities occur because, as 
we have seen, the energy and partition function of the SOS model with 
magnetic field (though no excess boundary energy) occur in intermediate 
stages of the solution to the ZL as defined above. The difference between 
the problems lies in which variables are considered fugacities: in the SOS 
model the radius of convergence in x paramount, while in the ZL (and 
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IPDSAW) it is a dummy variable set to one or y. Because there is a also 
a difference in the definitions of the lengths re themselves, this equivalence 
cannot be extended to the SOS problem with boundary energy (that is, to 
be possibly related to the ZL model with boundary potential). (In the SOS 
model the ri are the absolute heights of the horizontal steps above some 
fixed boundary, while in the ZL and IPDSAW they are differences between 
successive steps.) The IPDSAW model with boundary potential has been 
investigated elsewhere. (8'9) 

The generalized partition function Ztc~ y; go) for the continuous 
ZL model is 

1 + ZLC~ y; co) = 2a 1 _ _  

where, repeating for convenience, 

= 

and 
2 = log o9 

log y -  ~ - log co 

Jz- 1(~'~) (6.7) 

(6.8) 

(6.9) 

The generalized partition function ZLaisc(x, y; o9) for the discrete ZL model 
is 

1 + ZLdiSC(x, y; co) 

1 - o 9  

H(x ,  x ~ ,  xy2~(o9 - 1 ) ) /H(x ,  xo9, xy(o9 - I )) + 1 - ( 1 + o9) - ( 1 - o9) x 

(6.10) 

where the q-Bessel function H(x ,  q, t) is defined as before: 

q( '~ ) ( - t ) "  (6.11) H(x ,  q, t ) =  ,~o  (x; q)n(q; q)n 

with 
n 

(x;q)n= H (l--xq m-l) (6.12) 
m = l  

One can compare these to the results of the previous sections, where 
we now denote the generalized partition functions by P D ( x ,  y; o9): 

1 + eDc~ y; o9) = 0 "-1 J~(a2) (6.13) 
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for the continuous IPDSAW, and for the discrete IPDSAW is given by 

1 + pDdiS~(x, y; 09) 

1 -09  

2[H(x, x09, xy209(co- 1 ))/H(x, x09, xy (co -  1))] - ( 1  + co)-  (1 - c o ) x  

(6.14) 

The argument linking the ZL and IPDSAW models is slightly different 
in the continuous and discrete cases, so let us begin with the simpler, which 
is the continuous version. The essence of the argument is understanding 
how to construct configurations of the IPDSAW model from the restricted 
ZL space of walks. The energies of the common configurations are identical 
(suitably chosen); in fact, the ZL configurations form a subset of the full 
IPDSAW space. Consider an arbitrary IPDSAW walk. One can see that 
this walk can be uniquely partitioned into ZL subwalks concatenated 
together (see Fig. 5). Remember that ZL walks are those with at least one 
vertical segment, and one horizontal step is attached to each segment. By 
considering other IPDSAWs it is not difficult to convince oneself that any 
IPDSAW walk can be found by concatenating a certain number of ZL 
walks. Moreover, the set of walks obtained by concatenating ZL walks 
together, taking account of the arbitrariness of the direction of the first 
vertical segment, is precisely the set of IPDSAW configurations. The 
generating function can be constructed likewise as 

SO 

PD~~ y; co) = 2ZLC~ y; co) 2 [ZL~176 x, Y; c~ ~ 
k ~ O  

(6.15) 

2ZLC~ Y; 09) (6.16) 
PDC~ Y; co) = 1 - ZLC~ y; 09) 

The expressions given above satisfy this relationship. 

Fig. 5. A typical discrete IPDSAW walk showing how it can be uniquely decomposed into 
ZL walks. 
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The discrete case is complicated by the fact that one must avoid 
double counting those walks that begin with a horizontal step. Moreover, 
in the construction of the IPDSAW configurations from ZL walks each 
building block must take this double counting into consideration. This 
results in using 

ZL(x ,  y; co) - x[1 + ZL(x ,  y; co)] (6.17) 

instead of simply ZL(x ,  y; co) as the building block generating function. 
Again the IPDSAW generating function is constructed as 

pDdi~(x, y; o0) = [2ZL di~~ -- x(1 + ZLdiSc)] 

X ~ [ZLdiSe--x(l'-}-ZLdiSe)] k (6.18) 
k = O  

giving 

2ZLai~C(x 'Y;~ + ZLais~(x'Y;~ (6.19) 
pDdi~(x, y; o)) -- 1 -- { ZLaiSc(x, y; co) - x[1 + ZLdi~~ y; co)] } 

Again this relationship is easily verified using the exact expressions for the 
discrete generating functions. The necklacing arguments link the ZL and 
IPDSAW problems, while the ZL solution formally contains a certain SOS 
model solution. These connections account for the appearance of the same 
functions as solutions to several different problems considered in the 
literature. 

APPENDIX.  THE GENERALIZATION OF THE DISCRETE 
MODEL 

One step toward the computation of the length-scale exponents of 
IPDSAW is to distinguish between vertical segments, depending on their 
orientation in the walk. This leads to the investigation of a four-variable 
generating function of the discrete model. 

Although this generalization is still solvable, the solution is in the form 
of a rather complex expression. Nonetheless, this is an interesting 
generalization of the difference equations in Section 4. 

We introduce y+ and y as variables conjugate to steps into the 
positive y and negative y directions, respectively. Writing G + = Gr and 
G7 = G_r for nonnegative r (i.e., G~ = Go), we get in straightforward 
analogy to (4.9) 

G + = x y ~  {1+  ~ G~5 + ~ o)min(r's)G~} (A.1) 
s ~ O  s = l  
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This leads to the following difference equation: 

(G#~2-y+_ Gf+i)-q+_(G++,-y+_ G + )= -xq~+ 2 ( I - I )  G?+I (A.2) 

and the off-diagonal matrix 

/ - -  r a  -t- ) 

(q0r r) t?r = q + (A.4) 
0 

we can write (A.2) as 

( G r + 2 -  G r + , ) -  e ) (Gr+~-  Gr) = - x ( c o -  1)fL+~Gr+,  (A.5) 

The characteristic polynomial for the lhs of (A.5) is 

P[23 = ( 2 -  1)(2-r (A.6) 

For later convenience, we also define 

 (qo o) 
In modification of (4.143), we try the ansatz 

which leads to 

G r = 2  r ~ f27e, with c,=(G+_] (A.8) 
n=o \Cr / 

P[,~]co+ ~] tL"{ (,~. g2 r ~ Q r + 2 - - ( l W ( o ) ) ~ - ( 2  r g '2r+lq-( -O/)C, ,  2 

- - n  n ( + x ( 0 9 - i ) 2 s  r 12~+ l e . _ l ~ = 0  (A.9) 

where we denote q_+ = ~oy_+. 
In the case of no interaction (co= 1), the right-hand side of this 

equation is again zero and we have a set of decoupled homogeneous 
difference equations with constant coefficients. 

For m # 1, however, we now have to solve a set of coupled difference 
equations. For this it is convenient to introduce vector notation. Defining 
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where I is the 2 • 2 identity matrix. It is due to the appearance of matrix 
products in this equation that the solution is more complicated. 
Fortunately, these matrix products simplify, as 

~'~ 2 m ~ ' ~ 2 "  )sin ( )  1 -- 2 " ( ) 2 m - -  1 r r+s (q+q-- and _ r  _~+~ = ( q + q  )s(m-1)rs (A.10) 

Thus, the sum can be split up into even and odd terms, 

0 = P [ 2 J e o +  ~ O~,.{P[2(q+q_)m]e2m+X(0)--l)A(q+q )"ezm--1} 
m : l  

+ ~ 02,." l{P[2(q+q_)"-~F]e2"_l+x(0)-l)2(q+q )"-1Fe2,._2} 

,.=1 (A.11) 

Again, we have two solutions 2o=1 and 21=o). Comparison with 
Section 4 shows that we have to choose 2o = 1, as the two solutions have 
to coincide for q_ = q  + - q .  Thus 

1 m c~" - x (  0.)- )(q+q-) + c~"_ 1 and 
P[(q+ q_)"] 

whence it follows that 

+ --x(0)--l)(q+q )"q+ 

(A.12) 

+ x2m(0) _l)2"(q+q ) " 
c~,, - H m  )~ _ c~  (A.13) 

k: ip[(q+q_ lq+]p[(q+q_)~] 

and 
ft  ]m(rn + l ) f t m  + l + --xZm+'(0)--l)Z"+l(q+~--' ~+ --+ (A.14) 

e~-"+l - p[(q+ q_)mq+_] I-I"~=1 p[(q+ q_)k lq+ ] p~(q+ q_)k]co 

Inserting this into the ansatz (A.8), we get 

-- r + ~'~ rm + = .., (q+q-) (Cym+q+ y+ G;- c~,~+1) 
m ~ O  

= A  + c + - B  + c ;  (A.15) 

with 
_ ~ x2m(0)__l)2m(q+q )m(m+r)q,~ (A.16) 

A+ - - m = 0 1 - - [ : ~ 1 P - - ~ q + q ~  q +_ ] P[  (q+ q--)k] 

_ 1)2"+l(q+q_)"(m+r)q++ m+l 
- B+--m=op[(q+q_)"q+_]I-ik=l [ (q+q_)  q+]  [(q+q_)k] 

(A.17) 
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The initial condit ions determine the constants  c0. We get, in analogy 
to (4.25), 

1 - c o  f / 1 + c o  1 - c o  ~ ) - ~  
l + G ( x ,  y + , y _ , co ) = ----~--- , ~ ( x '  y + ' Y - ' co ) - {k - - - f - -  + - - -~ - -  x ) ; 

(A.18~ 

where 

~ ( x , y + , y _ ,  co )=Y+~G~ + y - t G  1 

2Go 

( A f t  + B ~  ) (A ~ --  B ~  ) - (A  o + . B o  )(A ? - B (  ) 

( A g  + B f f  ) ( A g - - B f f  ) - - ( A  o + B o  )(A o - B o  ) 

(A.19) 

The distinction between steps up and down thus leads to an expression 
which takes into account  the coupling between those steps, resulting in 
A + C B  +. For  y +  = y  = y  these expressions become equal, and (A.19) 
reduces to Eq. (4.27). 
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